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Abstract. Using the correlation function of the chiral vertex operators of the Coulomb gas model,
we find the Laughlin wavefunctions of the quantum Hall effect, with filling factorν = 1/m, on
Riemann sufaces with a Poincaré metric. The same is done for quasihole wavefunctions. We also
discuss their plasma analogy.

1. Introduction

The study of the behaviour of electrons living on a two-dimensional surface and interacting
with a constant magnetic field orthogonal to the surface is one of the most important parts
of physics, and is known as the quantum Hall effect (QHE). When the surface is plane, both
integer QHE and fractional QHE have been observed experimentally, and these have been
described by Landau- and Jastrow-type wavefunctions, respectively [1]. Also by introducing
new types of many body condensates which carry fractional charge, i.e. anyons, a unified
picture of integer and fractional QHE has been given. Furthermore, as it has been stressed by
Laughlin, the Laughlin–Jastrow wavefunctions, both for electrons and anyons have a natural
interpretation in terms of a two-dimensional plasma of charges, interacting by Coulomb forces
and embedded in a uniform neutralizing background [1].

A particularly intriguing and interesting case occurs when the two-dimensional surface is
a Riemann surface of higher genus. Although it is not accessible experimentally, the problem
of the physics on Riemann surfaces has a deep relation with some interesting problems, like the
occurrence of chaos in the surface with negative curvature [2], and recent developments in the
theory of surfaces, for example, surface moduli and the vector bundle defined on the moduli [3].
Until now, the QHE on different non-flat surfaces have been studied, for example, on the
sphere [4], torus [5], and on the hyperbolic plane [6, 7]. A recent and detailed investigation
was performed in [8], in which the Landau and Laughlin levels were studied on Riemann
surface with some particular metrics.

In [8] the authors showed that the wavefunctions consist of two parts. A holomorphic part
which is independent of the metric and a known metric-dependent function. For Landau levels,
they showed that the holomorphic part is the Slater determinant of sections of the holomorphic
line bundle, and for the Laughlin states they obtained an ansatz for the holomorphic part and
showed that this function is the determinant of the holomorphic sections of a vector bundle.
This vector bundle is the tensor product of a line bundle and a flat vector bundle of rankm

(ν = 1/m is the filling factor).
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Now, there is another approach for studying the QHE in which the conformal symmetry of
the QHE is used to calculate the different quantities. There are several pieces of evidence for the
existence of this symmetry. For example, in [9] it was shown that the Laughlin wavefunctions
are related to the conformal blocks of two-dimensional conformal field theories (CFTs). In the
same paper, the fractional statistics of quasiparticles was related to the braiding properties of
the vertex operators of the Coulomb gas model, which has conformal symmetry. In [10] it was
shown that the Halperin–Haldane singlet quantum Hall effect wavefunction can be split into two
parts. One part is related to a state describing a one-component plasma (OCP) system, and the
other part behaves like a conformal block of primary fields of thesu(2)Wess–Zumino–Witten
model. Also in [11] it was shown that the holomorphic part of the Laughlin wavefunction on
the torus can be obtained by the correlation function of the Coulomb gas vertices. Moreover,
it was pointed out that the Coulomb gas approach and the OCP description of the Laughlin
wavefunction are consistent.

In this paper we will study the QHE on an arbitrary Riemann surface, in the context of CFT.
Our purposes for this investigation are as follows. First, to see whether this relation between
the QHE and the Coulomb gas model can be generalized to general Riemann surfaces. Second,
as we will see, this approach is much easier than those considered in [8]. Third, our approach
can easily be generalized to the case where anyons also exist.

The plan of this paper is as follows. In section 2 we will discuss in brief the relation
between the OCP and the CFT description of the QHE. In section 3, by using the correlation
function of the Coulomb gas vertices on a Riemann surface (derived in [12–15]), we obtain the
holomorphic part of the Laughlin wavefunction. To do this, we must determine the parameters
of the corresponding Coulomb gas model appropriately. We will also discuss the different
aspects of this equivalence. In section 4, we obtain an expression for quasiholes wavefunctions
and determine their charges in this context.

2. The QHE on the plane

To obtain insight into the relation between the QHE and CFT, let us recall the Laughlin
wavefunction. It was shown by Laughlin [1] that the wavefunction of the QHE is the many
particle wavefunction which looks like

ψ(z1, z̄1, . . . , zN , z̄N ) =
N∏
i=1

exp

(
−
∫
Az̄i dz̄i

)
F(z1, . . . , zN) (1)

wherezj = xj + iyj is the position of thej th particle andAz̄ = 1
2(Ax + iAy) is the gauge

potential. The main purpose of theoretical investigations of the QHE is to determine the
holomorphic functionF(z1, . . . , zN) which must obey the Fermi statistics. Laughlin chose
this function to be the eigenfunction of the angular momentum, and showed that

∏N
i<j (zi−zj )m

is an appropriate function for a filling factorν = 1/m. The final result, inAx = − 1
2By and

Ay = 1
2Bx gauge, is

ψ(z1, z̄1, . . . , zN , z̄N ) =
N∏
i<j

(zi − zj )m
N∏
i=1

e−
1
4 |zi |2. (2)

By introducing the classical potential energyU through|ψ |2 = e−βU , whereβ−1 is an arbitrary
effective temperature, Laughlin showed that this system is equivalent to a two-dimensional
plasma of particles with electric chargem, interacting by Coulomb forces and embedded in a
uniform neutralizing background.
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Now the interesting point is that this OCP description of the QHE can also be achieved by
considering the Coulomb gas model. This model is a free massless scalar field modified with
a background charge at infinity. The two-point function of these fields [16] satisfies

∂z∂z̄〈8(z, z̄)8(w, w̄)〉 = πδ2(z, w) (3)

and8(z, z̄) splits into holomorphic and antiholomorphic parts. Note that this equation is
simply the Laplace equation for the Coulomb interaction. Ifϕ(z) is the holomorphic part of
8(z, z̄), then the expectation value of the product of the vertex operators : eiqϕ(zi ) : is

F(z1, . . . , zN) = 〈: eiq1ϕ(z1) : · · · : eiqNϕ(zN ) :〉 = exp

(
−qiqj

N∑
i<j

〈ϕ(zi)ϕ(zj )〉
)
. (4)

Now as on the plane〈ϕ(zi)ϕ(zj )〉 = − ln(zi − zj ), which is the Coulomb potential in two
dimensions, the holomorphic part of (2) is recovered by choosingqi =

√
m for all i (as the

particles are identical) andβ = 1/m. In this manner the Coulomb gas and the QHE relate to
each other on the plane, i.e. each vertex corresponds to an electron and its conformal charge√
m relates to the electric charge of plasma particles. In summary, as the Coulomb gas model is

effectively a theory of the Coulomb interaction and the QHE has a plasma analogy which again
is based on the Coulomb interaction, therefore the results of these two theoriescoincide. In
section 3 we will use this correspondence, and also the braiding properties of vertex operators,
to find the Laughlin wavefunctions on Riemann surfaces.

3. The Coulomb gas approach to the QHE on a Riemann surface with a Poincaré metric

Now we study the QHE on a two-dimensional compact and orientable Riemann surface6.
On this surface, the charged particles interact with the constant orthogonal magnetic field
produced by the monopoles. We choose, as in [8], the Poincaré metricgzz̄ = y−2. The simply
connected covering space of6 is the upper half-planeH and6 = H/0, where0 is a discrete
subgroup of the isometry group ofH . 0 is generated by Fuchsian transformations around a
canonical homology basis. For a covariantly constant magnetic fieldB, and in the symmetric
gaugeAz = Az̄ = 1

2By, the one-particle Hamiltonian [8] is

H = −gzz̄DD̄ +B/4 (5)

whereD = ∂ − 1
2B∂ ln gzz̄ andD̄ = ∂̄ + 1

2B∂̄ ln gzz̄ and we take the electron massm = 2 for
simplicity. The ground-state wavefunction satisfies

D̄ψ = 0 (6)

with solutionψ(z, z̄) = gzz̄−B/2F(z) = yBF (z), whereF(z) is a holomorphic function. The
behaviour ofF(z) under Fuchsian transformation were discussed in [8]. But here we want to
solve this problem in the context of CFT, so we need to find the behaviour of the wavefunction
under a larger transformation, i.e. the general conformal transformation of which the Fuchsian
transformation is a subclass. To do so, we note that for a two-dimensional surface with a
Poincaŕe metric, the conformal transformation, which leaves the metric invariant up to a scale
change

gz̃ ˜̄z dz̃ d˜̄z = �gzz̄ dz dz̄ (7)

reduces to the analytic coordinate transformations

z̃ = f (z) ˜̄z = f̄ (z̄) (8)
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wheref (f̄ ) is a holomorphic (antiholomorphic) function. Under conformal transformation
D andD̄ change as

D̃ = dz

dz̃
U−1DU ˜̄D = dz̄

d˜̄zU
′−1D̄U ′ (9)

where

U(z, z̄) = �−B/2
(

dz

dz̃

)−B/2(dz̄

d˜̄z

)B/2
U ′(z, z̄) = �B/2

(
dz

dz̃

)−B/2(dz̄

d˜̄z

)B/2
. (10)

The Hamiltonian (5) in the new coordinate is

H = −gz̃ ˜̄zD̃ ˜̄D +B/4 (11)

and the transformed ground-state wavefunctionψ̃ satisfies in ˜̄Dψ̃ = 0. Using (6) we find
ψ = U ′ψ̃ , and then using (10) we obtain

ψ̃�B/2 dz̃B/2 d˜̄z−B/2 = ψ dzB/2 dz̄−B/2. (12)

Now considering the decompositionψ(z, z̄) = yBF (z), and putting it in (12), we find thatF(z)
must be a primary field of weightB, i.e. aB-form under a general conformal transformation.

As mentioned in the introduction, the authors of [8] found the holomorphic part of Landau
and Laughlin wavefunction by lengthy calculations. Here we want to calculate these functions
by using the plasma analogy of the QHE, i.e. again using the Green functions of the Coulomb
gas, but now on a Riemann surface. So let us first give a brief review of the Coulomb gas
model on a Riemann surface. This model is defined by a bosonic scalar field coupled to a
background chargeQ and is described by the following action [15]:

S = 1

2π

∫
d2z

(
∂8(z, z̄)∂̄8(z, z̄) +

1

4
Q
√
gR8(z, z̄)

)
(13)

whereR is the scalar curvature of the surface andg = detgµν . In what follows we shall
consider only the holomorphic part of the correlation functions, and hence we requireϕ (the
holomorphic part of8) to compactify on a unit circleR/2πZ [15]. R is the real line and
Z denotes integer numbers. The correlation function of the vertex fields

〈∏N
j=1 : eiαjϕ(zj ) :

〉
has

been calculated in different contexts [12–15]. In [12] it was obtained by successive application
of the Wick theorem and by considering the effect of zero modes. In [13] it was shown that this
correlation function can be derived by splittingϕ(z) to its zero- and non-zero-mode components

ϕ(z) = 2π
g∑
i=1

pi

∫
ωi(ν) dν + ϕ̂(z) (14)

wherepi andϕ̂(z)are independent free fields andpi are zero-mode oscillators. The contraction
rule for ϕ̂(z) is 〈ϕ̂(z)ϕ̂(w)〉 = − lnE(z,w) [13, 15], which is the Green function of two
charges located atz andw, interacting via a Coulomb potential in two dimensions. In [14] the
correlation function was obtained by using theb–c system, which is described by the first-order
actionS = ∫ d2z b∂̄c. b andc are conformal fields with weightsλ andλ−1, respectively. By
calculating the correlation function of the vertex fields (vertex insertions), the authors of [14]
showed that they are the same as the corresponding one in the Coulomb gas model. The result
obtained in all the above papers is〈 N∏
j=1

Vqj (zj )

〉
=
〈 N∏
j=1

: eiqj ϕ(zj ) :

〉
=

N∏
k=1

σQqk (zk)

N∏
i<j

Eqiqj (zi, zj )θ

[
δ

ε

]
(cv|d�). (15)

Hereσ(z) is a holomorphic(g/2, 0)-form, without zero or pole, whereg is the genus of the
surface andσ(g = 1) = 1. E(zi, zj ) is a holomorphic(−1/2, 0)-form, which is antisymmetric
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under the interchange of its coordinates and is zero forzi = γ (zj ); γ ∈ 0, 0 ⊂ PSL(2R).
v = ∑

i qizi −Q1, in which the Riemann class1 is a (g − 1) degree divisor. The theta
characteristics(δ, ε), c andd must be consistent with the boundary condition ofVqi (zi). By
boundary condition we mean the behaviour of〈Vqi (zi)〉 under the winding of the pointzi
around the homology cycles of our Riemann surface. It can also be shown that the correlation
function (15) vanishes, unless the total chargesqi cancel the background chargeQ [12]:∑

i

qi = − Q
8π

∫
d2z
√
gR(z) = Q(g − 1). (16)

Now if we want the correlation function (15) to describe a fermionic wavefunction,qiqj must
be an odd integer (asE(zi, zj ) is antisymmetric). Also if we demand that all fermions are
identical, we must choose allqi to be equal to

√
m, wherem is an odd integer. In this way〈∏N

i=1Vqi (zi)
〉
becomes a Jastrow-type wavefunction.

Another necessary condition for
〈∏N

i=1Vqi (zi)
〉
to be a Laughlin wavefunction, is that its

behaviour under the action of conformal group transformation must be consistent with the
conformal weight of electrons wavefunctions, which, as mentioned after (12), is equal toB.
Now as the conformal weight of eiqϕ is 1

2q(q +Q) = 1
2

√
m(
√
m +Q), we obtain

B = 1
2(m +

√
mQ). (17)

Following the above discussion, the appropriate wavefunction for a Laughlin state, which
satisfies (12) and (16) for each of its coordinates, is

ψ(z1, . . . , zN) =
N∏
i=1

yBi

〈 N∏
j=1

Vqj (zj )

〉

=
N∏
i=1

yBi

N∏
i=1

σ 2B−m(zi)

×
N∏
i<j

Em(zi, zj )θ

[
δ

ε

](
m

N∑
i=1

zi − (2B −m)1|m�
)
. (18)

Following the freedom of choosing the characteristics of the theta function of (15) (as discussed
in [14]), we can choosec = √m andd = m in our case. This choice ofc andd is consistent
with the wavefunction on the torus [5,11] and also ensures that the phase ofψ , when the points
zi wind around the homology cycles, does not depend onzi . This independence comes from the
invariance of (6) under this winding [8]. Now what are the characteristicsδ andε? As discussed
in [8], by comparing the behaviour of the wavefunction under Fucshian transformations
z −→ γ z, with the behaviour of the theta functions under similar transformations, one arrives
at δ = δ0 + l/m, (li = 1, . . . , m and i = 1, . . . , g) and ε = ε0, whereδ0 and ε0 areg-
component constant vectors with components in the interval [0, 1). These values ofδ and
ε give the correct degeneracy number of the Laughlin wavefunctions, i.e.mg − g + 1. The
explicit values ofδ0 andε0 depend on our explicit choice of the phase which appears from
wavefunction underz −→ γ z. For example, in [5, 24] these values were fixed by choosing
u(γj , zj ) = eiφj (j = 1, . . . ,2g), whereu(γ, z) is defined throughψ(γ z) = u(γ, z)ψ(z),
γj is a transformation identifying the sides in the fundamental polygon which represents our
Riemann surface in the covering space, andφj is the flux through thej th cycle. In this way
our final result (18) becomes exactly the same as that obtained in [8].
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Now let us investigate the plasma description of the the wavefunction (18). We write this
wavefunction asψ = ψ1ψ2 where

ψ1 =
N∏
i=1

yBi

N∏
i<j

Em(zi, zj ) (19)

and

ψ2 =
N∏
i=1

σ 2B−m(zi)θ
[
δ

ε

](
m

N∑
i=1

zi − (2B −m)1|m�
)
. (20)

ψ1 only depends on the interaction part of the wavefunction, i.e. the Coulomb interaction, and
ψ2 is related to the spin structure of the electron wavefunction on this surface. Therefore the
interaction potentialU , which can be defined as

|ψ1|2 = e−βU (21)

becomes

U = − 1

β

( N∑
i=1

ln yi
2B +

N∑
i<j

ln |E(zi − zj )|2m
)
. (22)

Now as in the fundamental domain of the Riemann surface we have

∂z∂z̄ ln |E(z,w)|2m = πmδ2(z− w) (23)

by choosing 1/β = m, we see thatU is a Coulomb potential of particles with chargem,
interacting with themselves and with a uniform background chargeρ0 = B/2π [7]. Charge
neutrality of the plasma requires that the plasma particles spread out in the surface with density
ρm = ρ0/m, which corresponds to a filling factorν = 1/m.

To determine the precise value ofm, we use equations (16) and (17) to obtain

m(N + g − 1) = 2B(g − 1). (24)

This equation gives the value ofm in terms of the magnetic fieldB, the genusg, and the
number of electronsN . It is also interesting to see the geoemetrical meaning of (24). By
the Riemann vanishing theorem, the number of zeros of the theta function of (18) ismg and
as
∏N
i<j E(zi, zj )

m (as a function ofzi) hasm(N − 1) zeros, so the number of zeros of the
wavefunction (18) with respect to each of its coordinates ismg+m(N−1), which from (24) is
equal to the magnetic fluxφ = 2B(g − 1). This shows that the degree of the line (form = 1)
or vector (form > 1) bundle is equal to the first Chern number of the gauge field, as expected.

As a last point, we know that by suitable choice ofQ the Coulomb gas model can be
considered as a set of minimal models. The minimal models are characterized by two positive
coprime integersp andq with central chargec(Q) = 1− 6(p − q)2/pq. Now as the central
charge of a Coulomb gas isc(Q) = 1− 3Q2, equation (17) shows that ifB andm satisfy(

2B −m√
m

)2

= 2(p − q)2
pq

(25)

our QHE is a(p, q)minimal model. For example, forp = q + 1 unitary minimal models, any
odd integerm which satisfies

m = q(q + 1)

2

(
r

s

)2

(26)

wherer ands are integers, has a(q + 1, q) corresponding minimal model description. At
Q = 0, c is equal to 1 andB ism/2. A detailed discussion of this case can be found in [18].



The quantum Hall effect on Riemann surfaces 4439

4. Quasiholes on a Riemann surface

In this section we want to study the aspect of quasihole states in the context of conformal field
theory. Laughlin argued that the lowing excited state of the QHE are produced by creation of
quasiparticles (quasiholes) in the system. These are particles that obey fractional statistics, i.e.
by interchanging two of them, the wavefunction takes the eiθ phase. This phase for quasiholes
is π/m whereν = 1/m is the filling factor [1, 17]. If we want to express these particles in
terms of vertex fields, we must choose the appropriate charges for these vertices. Using (15)
it can be seen that by interchanging two vertices we obtain

〈Vqi (zi)Vqj (zj )〉 = eiπqiqj 〈Vqi (zj )Vqj (zi)〉 (27)

so we must chooseqi = 1/
√
m to relate the vertex fields to the quasiholes. Now consider a

system containingN electrons (represented by vertices with charge
√
m), andNq quasiholes

(represented by vertices with charges 1/
√
m), then equation (16) leads to

N
√
m +

Nq√
m
= Q(g − 1). (28)

Using equations (16) and (17) (which also holds in this case), we determine the filling factor

m(N + g − 1) +Nq = 2B(g − 1) = φ. (29)

This relation is consistent with the result pointed out in [17], and can be used to obtain the
electric charge of quasiholes with the method that was introduced in [4]. If the system of
N electrons, in the Laughlin state, is excited at fixed magnetic field by removal of an electron,
the final state has the following flux:

φ(N;m) = φ(N − 1;m) +m (30)

whereφ(N;m) = m(N + g − 1). Comparison of equations (29) and (30) shows that the new
system (30) is composed ofN −1 electrons andm quasiholes. Hence the quasiholes carry the
chargee∗ = e/m (e > 0). To reproduce this result in another way, we note that the charge of
particles can also be determined by using the OPE of the current and corresponding fields [9].
On a Riemann surface, the above OPE [19] is

J (z)eiϕ(w)/
√
m = 1/m

z− weiϕ(w)/
√
m + · · · . (31)

Therefore following the steps of [9], the charge of the quasihole corresponding to the vertex
eiϕ(w)/

√
m is e∗ = e/m.

At the end, we present an expression for the holomorphic part of the wavefunction
containingN electrons and one quasihole:

ψ(z, z1, . . . , zN) =
〈
Vq(z)

N∏
i=1

Vqi (zi)

〉

= σ (2B−m)/m(z)
N∏
i=1

σ 2B−m(zi)

×
N∏
i=1

E(zi, z)

N∏
i<j

Em(zi, zj )θ

[
δ

ε

](
m

N∏
i=1

zi + z− (2B −m)1|m�
)

(32)

which is obtained by (15). Factorizing this wavefunction asψ = ψ1ψ2, where

ψ1 =
N∏
i=1

E(zi, zj )

N∏
i<j

Em(zi, zj ) (33)
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andψ2 other terms, and again by considering|ψ1|2 = exp(−U/m), one can see thatU is the
Coulomb potential of a system of particles of chargem, interacting with themselves and with
a particle of charge 1 located atz (which again proves thate∗ = e/m).

At the end we would like to add a point. One of the important points in the physics of
the QHE is to understand the incompressibility feature of the Laughlin wavefunctions, which
may be related to the quantum group symmetry of the Laughlin states [7,20–22]. On the other
hand, there is a deep connection between the conformal and quantum group symmetries [23].
Our procedure in expressing the Laughlin states in the context of CFT may shed some light on
these connections on Riemann surfaces. We will discuss these elsewhere.

5. Conclusion

Using the analogy of the Coulomb gas and the plasma description of the quantum Hall effect
(QHE), the conformal symmetry of Laughlin states, and the results found for the Coulomb gas
model on a Riemann surface, we obtained the Laughlin wavefunction on an arbitrary compact
and orientable Riemann surface. We also determined the filling factor and degeneracy of these
wavefunctions. In the case of the Poincaré metric, we found the plasma description of the
QHE on these surfaces and also state the relation between the FQHE and minimal models.
Finally, for the cases where the quasiholes are also present, we found the wavefunctions.
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